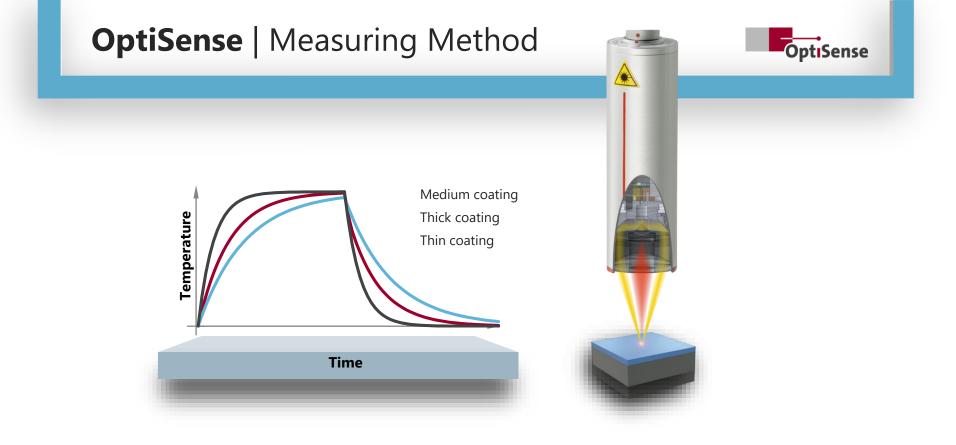


OptiSense | Haltern am See | Germany Nico Janßen | Sales & Business Development

How to get the perfect surface


OptiSense | Measuring Method

OptiSense

Measuring method

- A beam of light heats the coating surface
- The heat travels down through the coating
- The coating cools down again at different speed depending on thickness
- A detector measures the cooling time and calculates the coating thickness

Efficiency Target | Process Optimization

The challenge

- Minimize annoying noise while driving, such as "creaking", by applying a special paint coating
- Avoid coating thickness variation: Anti-creak coatings require precise application, otherwise a disturbing noise level persists
- Precisely determine transparent, thin anti-creak coatings (15 µm) on plastic substrates
- Provide on-site testing support at customer site
- Replace costly, error-prone and time-consuming existing test methods

Efficiency Target | Process Optimization

The strategy

- Non-contact coating thickness measurement
- PaintChecker Mobile with tripod for measuring anti-creak coatings in the lab
- Correlate "stick-slip behavior" with coating thickness measurement data
- Use PaintChecker as a mobile device for quality control at the customer's site
- Atline test for "fine tuning" the coating thickness

Results | Process Efficiency

The solution: PaintChecker Mobile in the lab

- Development of suitable lubricant solutions
- Determining the optimum coating thickness range for particular friction partners
- Correlation of stick-slip analysis with PaintChecker measurement data

Results | Process Efficiency

The solution: PaintChecker Mobile at the customer's site

- Support for the customer's paint application; on-site application testing of the anti-creak coating.
- Analysis of critical areas of the part with the PaintChecker Mobile
- Optimization of plant parameters for anti-creak paint application

Results | Process Efficiency

The result

- ✓ Accurate coating thickness
- ✓ Reduction of development time
- ✓ Saving paint, effort and time; reduced costs
- → Efficiency targets of process optimization achieved!

The PaintChecker is the only measurement system based on physical principles that can measure the actual coating thickness of the transparent anti-resin paint on a rough plastic surface!

OptiSense | Resource Efficiency

Resource efficiency at the Brückner Group

- Manufacturer of complex plants for the finishing of textiles
- Multifunctional plant with 7 x 30 m working width
- Sheet metal and steel parts are painted using wet technology or powder-coated
- Powder coating system with automatic guns handles about 80 percent of the applications
- Hard-to-reach areas are coated manually

Efficiency Target | Material Savings

The challenge

- Uniform *minimum* coating thickness application
- Testing hard to reach areas

The solution

- PaintChecker Mobile hand-held unit
- Non-contact coating thickness measurement
- Atline testing before baking

Efficiency Goal | Staff Qualification

The challenge

- Precise powder application for (new) special coatings
- Processes cannot be standardized
- Shortage of skilled workers

The Strategy

- Intensive training of less experienced employees
- Automate learning processes as far as possible

PaintChecker Mobile | Solution

The solution: PaintChecker Mobile

- Flexible, lightweight hand-held device
- Checks without contact before curing
- Measures hard-to-reach areas
- Can be used on a wide range of materials
- Precise and easy to use
- "Virtual teacher": inexperienced stuff can quickly check and ajust their powder application

Results | Resource Efficiency

- ✓ Less scrap and rework
- ✓ Production losses significantly minimized
- ✓ Effort and time saved; costs reduced
- ✓ Fast and "automated" training of new colleagues
- ✓ Employees can optimize their skills independently

→ Efficiency goals *material savings* and *staff qualification* exceeded!

Recalculated: How much do you save?

Model calculation

Coated area per year300,000 m²Powder price per kilo10,- \$Density after baking1.5 g/cm³Powder loss7 %

	Target	Actual	Savings	
Coating thickness	60	80	20	μm
Powder consumption	28.89	38.52	9.63	t/Year
Powder coating costs	288,900 \$	385,200 \$	96,300	\$
Cost of scrap/rework	3,082 \$	15,408 \$	12,326	\$
Total costs	291,982 \$	400,608 \$	108,626	\$
CO ₂	260	347	87	t/Year

Recalculated: This is how much you save!

Powder Saving 9.6 to

Cost Reduction

CO₂ Savings **87** + 0

OptiSense | Resource Efficiency

Coating of household appliances | Baking Oven

- The cooking chamber of an oven is heavily strained:
 - Temperatures up to 350°C
 - Persistent dirt removed by pyrolysis at 500 °C
 - Scratching and bumping should have no effect
- Today: glass-ceramic powder material instead of liquid enamel dispersion
- A very smooth but highly porous surface
- At 800 μm, the ceramic coating is significantly thicker than conventional powder coatings

Efficiency Target | Material Savings

The challenge

- Measuring the very sensitive, uncured powder layer
- Checking at several different positions in the oven
- Space for measurements is extremely limited inside the cooking chamber
- Measurements have to be taken quick and precise

Efficiency Target | Material Savings

The solution: PaintChecker Industrial

- Non-contact, non-destructive system checks before baking
- Highpower multi-sensor measurement system
- Integrated into highly automated production line

The result

- ✓ Precise and reproducible coating
- ✓ Material savings reduce costs
- ✓ Scrap is avoided, productivity is significantly increased

Efficiency Target | Zero Defect Tolerance

Efficiency in battery production

- Battery systems of electric cars consist of lithium-ion cells
- 800 volts voltage
- Safety of the modules is the primary goal
- Coating thickness is a function-critical parameter

Efficiency Target | Zero Defect Tolerance

The Challenge

- 100% control of the battery coating
- Short cycle times → fast measurements
- Synchronous measurements at several points
- Very limited space in the plant

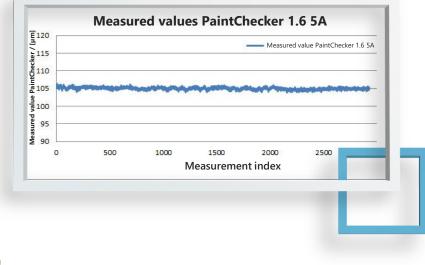
The Strategy

Development of a novel coating thickness inspection system for battery cells

PaintChecker Industrial | Solution

The Solution: PaintChecker Industrial

- Industrial, non-contact coating thickness measuring system
- Controls several sensor heads simultaneously
- Angular sensor with folded optics for minimal installation space
- Measures coating thickness up to 300 μm quickly, accurately and reproducibly



Efficiency Target | Zero Defect Tolerance

The Result

- ✓ 100% testing of coating thickness
- ✓ Fast and reproducible measurements
- Far more accurate than conventional eddy current or magnetic inductive measurement methods
- ✓ Optimised process control
- ✓ Traceable documentation

→ Efficiency target Zero-Defect Tolerance met!

Sales Manager Tel. +49 (0)2364 50882-210 Mobil +49 (0) 151 11688713 janssen@optisense.com

OptiSense GmbH & Co. KG Annabergstraße 120 45721 Haltern am See GERMANY www.optisense.com

